Target-locking acquisition with real-time confocal (TARC) microscopy.
نویسندگان
چکیده
We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.
منابع مشابه
In vivo real-time confocal microscopy for target-specific delivery of hyaluronic acid-quantum dot conjugates.
UNLABELLED Hyaluronic acid (HA), which is a biocompatible, biodegradable, and linear polysaccharide in the body, has been widely used for various biomedical applications. In this work, real-time bioimaging for target-specific delivery of HA derivatives was carried out using quantum dots (QDs). In vitro confocal microscopy of HA-QD conjugates confirmed the intracellular delivery of HA derivative...
متن کاملFluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophor...
متن کاملReal-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy.
AIM To produce two-dimensional reconstruction maps of the subepithelial nerve plexus (SEP) in living cornea by in vivo laser scanning confocal microscopy in real time. METHODS In vivo confocal laser scanning microscopy (Heidelberg Retinal Tomograph II in conjunction with the Rostock Cornea Module) was performed on normal eyes (n=6) and eyes after laser-assisted in situ keratomileusis (LASIK) ...
متن کاملEvaluation of Phase Locking and Cross Correlation Methods for Estimating the Time Lag between Brain Sites: A Simulation Approach
Introduction: Direction and latency of electrical connectivity between different sites of brain explains brain neural functionality. We compared efficiency of cross correlation and phase locking methods in time lag estimation which are based on local field potential (LFP) and LFPspike signals, respectively. Methods: Signals recorded from MT area of a macaque’s brain was used in a simulation ...
متن کاملLow-cost, frequency-domain, fluorescence lifetime confocal microscopy.
We describe the theory and implementation of a frequency-domain fluorescence lifetime confocal microscope using switched diode laser illumination. Standard, communications-type, radio-frequency electronics are used to provide inexpensive modulation references and to perform phase-sensitive detection. This allows the rapid acquisition of fluorescence intensity and lifetime images and their displ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2007